The Yersinia Type III secretion effector YopM Is an E3 ubiquitin ligase that induced necrotic cell death by targeting NLRP3
نویسندگان
چکیده
Yersinia pestis uses type III effector proteins to target eukaryotic signaling systems. The Yersinia outer protein (Yop) M effector from the Y. pestis strain is a critical virulence determinant; however, its role in Y. pestis pathogenesis is just beginning to emerge. Here we first identify YopM as the structural mimic of the bacterial IpaH E3 ligase family in vitro, and establish that the conserved CLD motif in its N-terminal is responsible for the E3 ligase function. Furthermore, we show that NLRP3 is a novel target of the YopM protein. Specially, YopM associates with NLRP3, and its CLD ligase motif mediates the activating K63-linked ubiquitylation of NLRP3; as a result, YopM modulates NLRP3-mediated cell necrosis. Mutation of YopM E3 ligase motif dramatically reduces the ability of Y. pestis to induce HMGB1 release and cell necrosis, which ultimately contributes to bacterial virulence. In conclusion, this study has identified a previously unrecognized role for YopM E3 ligase activity in the regulation of host cell necrosis and plague pathogenesis.
منابع مشابه
The Yersinia pestis Effector YopM Inhibits Pyrin Inflammasome Activation
Type III secretion systems (T3SS) are central virulence factors for many pathogenic Gram-negative bacteria, and secreted T3SS effectors can block key aspects of host cell signaling. To counter this, innate immune responses can also sense some T3SS components to initiate anti-bacterial mechanisms. The Yersinia pestis T3SS is particularly effective and sophisticated in manipulating the production...
متن کاملShigella IpaH7.8 E3 ubiquitin ligase targets glomulin and activates inflammasomes to demolish macrophages.
When nucleotide-binding oligomerization domain-like receptors (NLRs) sense cytosolic-invading bacteria, they induce the formation of inflammasomes and initiate an innate immune response. In quiescent cells, inflammasome activity is tightly regulated to prevent excess inflammation and cell death. Many bacterial pathogens provoke inflammasome activity and induce inflammatory responses, including ...
متن کاملA Pathogen Type III Effector with a Novel E3 Ubiquitin Ligase Architecture
Type III effectors are virulence factors of Gram-negative bacterial pathogens delivered directly into host cells by the type III secretion nanomachine where they manipulate host cell processes such as the innate immunity and gene expression. Here, we show that the novel type III effector XopL from the model plant pathogen Xanthomonas campestris pv. vesicatoria exhibits E3 ubiquitin ligase activ...
متن کاملSalmonella type III secretion effector SlrP is an E3 ubiquitin ligase for mammalian thioredoxin.
Salmonella enterica encodes two virulence-related type III secretion systems in Salmonella pathogenicity islands 1 and 2, respectively. These systems mediate the translocation of protein effectors into the eukaryotic host cell, where they alter cell signaling and manipulate host cell functions. However, the precise role of most effectors remains unknown. Using a genetic screen, we identified th...
متن کاملThe Yersinia Virulence Factor YopM Hijacks Host Kinases to Inhibit Type III Effector-Triggered Activation of the Pyrin Inflammasome.
Pathogenic Yersinia, including Y. pestis, the agent of plague in humans, and Y. pseudotuberculosis, the related enteric pathogen, deliver virulence effectors into host cells via a prototypical type III secretion system to promote pathogenesis. These effectors, termed Yersinia outer proteins (Yops), modulate multiple host signaling responses. Studies in Y. pestis and Y. pseudotuberculosis have s...
متن کامل